- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Bart, Rebecca_S (1)
-
Berry, Jeffrey_C (1)
-
Borer, Elizabeth T (1)
-
Creech, Cody (1)
-
Dangl, Jeffery_L (1)
-
Finkel, Omri_M (1)
-
Glavina_del_Rio, Tijana (1)
-
Holcomb, Emily (1)
-
Jupe, Julietta (1)
-
Kinkel, Linda L (1)
-
Kuhs, Molly (1)
-
Kuhs, Molly A (1)
-
Lane, Brett R (1)
-
Liu, Peng (1)
-
O’Connor, Lily (1)
-
Qi, Mingsheng (1)
-
Salas-González, Isai (1)
-
Schachtman, Daniel_P (1)
-
Schlatter, Daniel C (1)
-
Seabloom, Eric W (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Plants in grasslands navigate a complex landscape of interactions including competition for resources and defense against pathogens. Foliar fungi can suppress plant growth directly through pathogenic interactions, or indirectly via host growth-defense tradeoffs. The exclusion of foliar fungi allows the reallocation of resources from defense to growth and reproduction. In addition, plants also invest photosynthates in rhizodeposition, or root exudates, which play a significant role in shaping the rhizosphere microbial community. However, it remains unclear what impact the exclusion of foliar fungi has on the allocation of resources to rhizodeposition and the composition of the rhizosphere microbial community. Using a 6-year foliar fungicide study in plots planted with 16 species of native prairie plants, we asked whether foliar fungi influence the rhizosphere microbial composition of a common prairie grass (Andropogon gerardii) and a common legume (Lespedeza capatita). We found that foliar fungicide increased aboveground biomass and season-long plant production, but did not alter root biomass, seed production, or rhizosphere microbial diversity. The magnitude of change in aboveground season-long plant production was significantly associated with the magnitude of change in the rhizosphere microbial community in paired foliar fungicide-treatedvs. control plots. These results suggest important coupling between foliar fungal infection and plant investment in rhizodeposition to modify the local soil microbial community.more » « lessFree, publicly-accessible full text available March 5, 2026
-
Qi, Mingsheng; Berry, Jeffrey_C; Veley, Kira_W; O’Connor, Lily; Finkel, Omri_M; Salas-González, Isai; Kuhs, Molly; Jupe, Julietta; Holcomb, Emily; Glavina_del_Rio, Tijana; et al (, The ISME Journal)Abstract Drought is a major abiotic stress limiting agricultural productivity. Previous field-level experiments have demonstrated that drought decreases microbiome diversity in the root and rhizosphere. How these changes ultimately affect plant health remains elusive. Toward this end, we combined reductionist, transitional and ecological approaches, applied to the staple cereal crop sorghum to identify key root-associated microbes that robustly affect drought-stressed plant phenotypes. Fifty-three Arabidopsis-associated bacteria were applied to sorghum seeds and their effect on root growth was monitored. Two Arthrobacter strains caused root growth inhibition (RGI) in Arabidopsis and sorghum. In the context of synthetic communities, Variovorax strains were able to protect plants from Arthrobacter-caused RGI. As a transitional system, high-throughput phenotyping was used to test the synthetic communities. During drought stress, plants colonized by Arthrobacter had reduced growth and leaf water content. Plants colonized by both Arthrobacter and Variovorax performed as well or better than control plants. In parallel, we performed a field trial wherein sorghum was evaluated across drought conditions. By incorporating data on soil properties into the microbiome analysis, we accounted for experimental noise with a novel method and were able to observe the negative correlation between the abundance of Arthrobacter and plant growth. Having validated this approach, we cross-referenced datasets from the high-throughput phenotyping and field experiments and report a list of bacteria with high confidence that positively associated with plant growth under drought stress. In conclusion, a three-tiered experimental system successfully spanned the lab-to-field gap and identified beneficial and deleterious bacterial strains for sorghum under drought.more » « less
An official website of the United States government
